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ABSTRACT 
 

OFF AXIS COMPRESSIVE RESPONSE OF ICE TEMPLATED CERAMICS  
 

Rahul Kumar Jujjavarapu  
Old Dominion University, 2019  

Co-Directors: Dr. Oleksandr Kravchenko  
                                                                    Dr. Dipankar Ghosh 
 
 

The off-axis compressive behavior of ice-templated ceramic was analyzed using 

experimental results and micro-mechanical model simulation. Ice-templated ceramics is a 

versatile processing technique used to manufacture anisotropic ceramic foam by exploiting the 

anisotropic growth characteristics and lamellar morphology. The ice-templating process results 

in processing-structure-property relationships determined by the microstructure. The processed 

alumina samples which were later manufactured by water jet machine from the freeze casting 

were tested under quasi-static off-axis loading conditions and were used to determine the 

mechanical properties of the material. Digital image correlation (DIC) was used to measure the 

strain response of ice-templated ceramic under off-axis loading. DIC results revealed non-

homogenous strain distribution in the material during compression. Specifically, the origin of the 

localized strain concentration columnar regions, which are oriented in the ice-growth direction. 

Those regions were found to be the onset failure of in off-axis and 0-degree loading conditions. 

The experimental results reveal the strong influence of the loading direction on the compressive 

behavior of the ice-templated ceramic. A Representative Volume Element is developed to predict 

the behavior of off-axis loading. Micro-mechanical loading results in indicated that buckling of 

lamella walls were determined as the driving factor of failure. The results of the model compared 

favorably with the experimental results.  
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NOMENCLATURE 

 

A  Cross sectional area 

L  length  

F  Force 

𝐹𝐹𝑡𝑡  Force rate  

G  Shear Force 

m  cosine angle 

n  sine angle 

U  is the displacement  

x  component 

y  component 

z  component 

 

 

Greek symbols 

𝜎𝜎  Normal Stress  

𝜀𝜀  Normal Strain (Engineering Strain) 

𝜀𝜀𝑡𝑡  Strain rate  

𝜈𝜈  is the Poison’s ratio  

𝜏𝜏  is shear strain 

𝛼𝛼  is the angle of orientation  

𝜃𝜃  Angle 
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CHAPTER 1 

 

Introduction 

 

In this era, as the usage of composite materials is increased, ceramics have taken their 

unique place, Ceramics are by definition compounds between metallic and non-metallic 

elements. This thesis mainly focuses on a specific ceramic as it discussed the studies the 

mechanical behavior of ice-templated Aluminum Oxide (Al2O3). This material has started to be 

used as a component in special and advanced engineering applications [1]. Due to the excellent 

properties of aluminum oxide such as resistance to a wide range of chemical agents, lighter 

weight than metals, and strength characteristics compared to other metals, innovative design cost 

is economical. Through the investigation of the microstructure, this ice-templated alumina is 

observed to be cellular ceramics. Cellular solids, in the form of either honeycomb-like materials 

with prismatic cells or foams with polyhedral cells, are widely used in engineering applications 

such as lightweight structural sandwich panels or components designed for absorbing impact 

energy [1]. They also appear widely in natural materials such as wood and bone. Models which 

predict their compressive failure behavior have broad applicability to both engineered and 

natural cellular materials.  Cellular ceramics are a class of highly porous materials that cover a 

wide range of structures, such as foams, honeycombs, interconnected rods, interconnected fibers, 

inter-connected hollow spheres. These highly porous materials have a lot of applications as 

filters for molten metal, hot gas and diesel engine exhausts filters, catalyst carriers, biomaterials, 

thermal insulators for furnaces and aerospace applications, gas combustion burners and 

lightweight building materials [1]. This work used powders that are commercially available. 

Specifically, ice-templated scaffolds were processed from the commercially available Al2O3 
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powders of different sizes. The suspensions used to prepare the samples were processed from 

these powders. These suspensions were again employed through a process which is a prominent 

technique in the ceramics field named as freeze casting.  

These alumina powders are processed through a technique called freeze casting. It is a cost 

effective and environmentally friendly technique. In this technique, an aqueous and non-aqueous 

solution particulate suspension is solidified under a unidirectional temperature gradient. During 

unidirectional solidification of an aqueous particulate suspension, ice crystals nucleate and grow 

from the bottom to the top of the suspension i.e. in the direction of the applied unidirectional 

thermal gradient [2,4,5]. The ice crystals start to grow at the bottom of the suspension and 

propagate upwards under the influence of the applied thermal gradient. The mold which is made 

of Teflon tube where the suspensions placed is radially insulated to avoid horizontal thermal 

gradient and ensure the aqueous suspensions are solidified only in the vertical direction. This 

Teflon tube is placed on a steel plate. Their gap is adjusted between the steel plate and the top of 

nitrogen gas to control the freezing front velocity. The thermocouple is placed on the steel plate 

to measure the temperature during the freezing process. 

Scanning electron microscopy analysis reveals some interesting microstructural morphology 

exhibited by freeze casted ceramics. Specifically, lamellar pore morphology is observed where 

architecture found to be in the form of alternating layers is interconnected with the bridges. 

Therefore, this anisotropic morphology stems from the processing technique. The ideal 

fabrication technique should produce scaffolds with controlled pore size, shape, and orientation 

in a reliable and economical way. Experimental and numerical investigations on natural cellular 

solids suggest that such anisotropic pore architecture could be beneficial to improve the 

mechanical and functional properties of engineering cellular solids. There are studies done to 
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understand the various processes of ceramic materials and physics behind the process and 

establish the processing micro structural relationship. 

The uniaxial compressive response of ice-templated sintered alumina scaffolds has a strong 

dependence on the solids loading of ceramic suspensions and freezing velocity. It is observed 

that the variation of the particle size has a significant effect on the freezing front velocity [5].  

Moreover, increasing the solids loading there is a transition in the pore morphology, and the FFV 

is observed to be more drastic for scaffolds processed. In the previous work, it states that 

microstructure of each Al2O3 scaffold was characterized from two different planes transverse to 

the freezing direction. The addition of platelets to the suspension showed improvement of the 

mechanical response in which it is rationalized based on the stiffening and strengthening effects 

exhibited by the intralamellar and interlamellar platelets. 

It is observed that low FFV regime platelets are mainly present within the lamella walls whereas 

increasing the FFV more platelets can be found in between the walls that developed lamellar 

bridges. The investigations reveal that for a given suspension concentration, not only the FFV 

but also the platelets content can induce significant microstructural modifications [6]. Now with 

the increase of platelets, the fraction of the lamellar bridges also increased. There is a 

tremendous amount of increase in the stiffness, peak stress, and plateau stress and energy 

absorption capacity with the inclusion of the platelets. The dendritic architecture is observed by 

the pore volume where highly lamellar pore morphology is seen.  

At comparable freezing front velocity, smaller particles will have a greater tendency to be 

ejected by the advancing ice front in comparison to relatively large [5]. The studies reveal that 

process microstructure relationship and the properties of the material were responsible for its 

compressive strength. Further, making observations of the micrographs reveals the walls of 
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alumina have alternatively occurred; with the inclusion of platelets the bridges are formed. The 

anisotropic materials manifest different properties in different directions, which made us focus 

on studying different orientations.  

The variation of the normalized quasi-static compressive strength with relative density 

reasonably predicted by the Gibson and Ashley for closed-cell, open cell, and honeycomb foams, 

which gives insight for computational modeling. A honeycomb-shaped structure provides a 

material with minimal density and relatively high out-of-plane compressive properties and out-

of-plane shear properties. Computational micromechanics stands as a very useful tool in this area 

as it can provide virtual tests which can be used to check the different failure criteria. The 

experimental study of the mechanical behavior of alumina scaffolds has been studied under 

transverse and longitudinal compression, as well as in off-axis compressive loading cases. The 

representative volume element (RVE) was proposed for the micromechanical analysis based on 

the honeycomb analogy. Representative volume element (RVE) is the smallest volume over 

which a measurement can be made that will yield a value representative of the whole. Abaqus 

software was used to develop a RVE. Further, to design the model in the Abaqus we studied the 

spacing between the lamella walls and angle of the bridges with respect to the lower lamella wall 

from the micrographs. Modeling results indicated that buckling of the lamella walls was 

determined to be the driving factor of failure. The results of the model have been compared with 

the experimental results. 
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CHAPTER 2 

 

Literature Review 
 

 2.1 Cellular solids and its applications 

Cellular solids are prevalent in natural and engineered structures; models that can explain 

their mechanical behavior have widespread utility. Generally, porosity is detrimental in 

engineering solids because of the undesirable effects on the mechanical and functional properties 

in the end applications. However, most of the engineering solids such as metals, ceramics, and 

polymers contain a very small percentage of processing-induced porosity, which is inevitable. 

Interestingly, there are numerous natural solids such as bones, cork, wood, leaves, sponges, and 

coral where the constituent materials are arranged in a fashion that leads to the formation of a 

two- or three-dimensional arrangement of pores creating highly porous architectures [2]. 

Successful models of cellular solids can be used to understand their observed behaviors and 

predict the behaviors from a description microstructural property such as relative density and the 

orientation. Cellular solid is one made up of an interconnected network of solid struts or plates, 

which form the edges and face of cells. The single most important feature of a cellular solid is its 

relative density. As the relative density increases, the cell wall thickens, and the pore space 

shrinks. Cellular solids have physical, mechanical and thermal properties which are measured by 

the same methods as those used for fully dense solids. The major applications of the cellular 

materials are thermal insulation, packaging, structural use, and buoyancy. Most of the cellular 

solids have been used for thermal insulation [1] in products as humble as disposable coffee cups 

and as elaborate as the insulation of the booster rockets for the space shuttle. Modern buildings, 
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transport systems, and even ships all take advantage of the lower thermal conductivity of the 

expanded plastic foams. The second major use of the man-made cellular solids is in packaging. 

An effective package must absorb the energy of impacts or of forces generated by deceleration 

without subjecting the contents to damaging stresses. The strength of the cellular solids can be 

adjusted by controlling its relative density. These can undergo large compressive strains at 

almost constant stress so that a large amount of energy can be absorbed without generating high 

stresses. 

Many natural structural materials are cellular solids: wood, cancellous bone, and coral all support 

large static and cyclic loads, for a longer period. The structural use of natural cellular materials 

by man is as old as history itself. The shape and structure of cells are important because the 

properties of cellular solids depend directly on the shape and structure of the cells. Cellular solids 

have relative densities, which are less than about 0.3; most are much less, with densities as low 

as 0.003 [1]. The structure of the cellular solids ranges from the near-perfect order of the bee’s 

honeycomb to being disordered. The study of the geometry of the three-dimensional cellular 

solids has a pedigree almost as distinguished as that of honeycomb. The material description 

should be as full as possible, to allow the solid material properties to be identified. The density is 

straightforward: it is usually adequate to cut a block of foam, measure its dimensions, and weigh 

it. But in seeking the correlations between properties and structure it is important to measure the 

density of each sample since densities can vary by 10% or more in a single batch of material. 

Cellular ceramics are processed by sintering of loosely packed of ceramic powder compacts, 

which mainly leads to the formation of open-cell porous materials. By definition, sintering is a 

heat treatment process in which a powder or porous material, already formed into a required 

shape, is converted to useful solid. Sintering is achieved by heating the consolidated mass of 
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particles, referred to as the green body or powder compact, to a temperature that is in the range 

between approximately 50% and 80% of melting temperature. The powder is heated below its 

melting point which results in joining together of the particles and the densification of the body 

as required in the fabrication process. This type of sintering is referred to as solid-state sintering. 

The key objective of the sintering studies is, therefore, to understand how the processing 

variables influence the microstructure.  

Ceramics have covalent bonds which are strong giving the materials higher melting points and 

moduli other than any solid [9]. The strong bonding has another consequence: it gives strong 

elastic coupling between atoms. This gives thermal conductivities which are larger by a factor of 

about 100 than those of polymers. The strong ionic and covalent bonds give ceramics a relatively 

high modulus. The modulus slightly varies with temperature. 

Honeycombs shed light on the mechanics of much more complex three-dimensional foams. If a 

honeycomb is compressed in-plane, the cell walls at first bend, giving linear elastic deformation. 

Beyond a critical strain the cell collapses by elastic buckling, plastic yielding, creep, or brittle 

fracture, depending on the cell wall material [1]. As these are brittle materials it tends to fracture. 

The in-plane stiffness and strengths are the lowest because stresses in the plane make cell walls 

bend. The out-plane stiffness and strengths are much larger because they require the axial 

extension or compression of the cell walls. In brittle materials it is by the brittle fracture of the 

cell walls, at high strains, the cells collapse sufficiently that opposing cell walls touch and further 

deformation compresses the cell material itself. The increase in the relative density of 

honeycomb increases the relative thickness of cell walls. Then resistance to cell wall bending 

and cell collapse rises, giving a higher modulus and plateau stress; and the cell walls touch 

sooner, reducing the strain at which densification begins. Honeycombs are much stiffer and 
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stronger when loaded along the cell-axis in the z-direction. Similarly, it shows high values of 

strength and stiffness in the z-direction out of the plane. For out-of-plane loading, the initial 

linear elastic deformation involves significant axial or shear deformations of the cell walls 

whereas the latter part of the curve is by tearing or crushing 
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2.2 Unidirectional Freezing of Aqueous particulate suspensions. 

Cellular ceramics can be engineered to combine several advantages inherent to their architecture: 

they are lightweight, can have open or closed porosity making them useful as insulator or fillers, 

can withstand high temperatures and exhibit high specific strength, and are particular in 

compression. The full potential of cellular ceramics will only be achieved once a proper control 

of size, shape, and amount of porosity is available. There are several methods for processing of 

cellular ceramics: replica method, direct foaming, sacrificial phase foaming, paste extrusion, 

amorphous bubble bonding, and rapid prototyping. 

The replica method is a heat treatment process where the burn off the polymer component, which 

leaves behind a ceramic skeleton and is then sintered to develop a porous ceramic structure that 

is a replica of the starting polymeric foam. A typical ceramic foam microstructure is obtained 

through the replica method. Secondly, for indirect foaming technique, a ceramic suspension is 

first foamed by introducing gas bubbles into suspension. Then the suspension is polymerized to 

retain the porous architecture induced through the gas bubbles, followed by demolding, drying, 

and sintering to develop a porous ceramic structure. Next, the sintered foams are glazed to 

improve the mechanical properties of the porous ceramic structure. Thirdly, the sacrificial phase 

technique for the fabrication of porous ceramics involves in the preparation of a two-phase 

composite consisting of a continuous matrix of ceramic and sacrificial particulate phase. Fourth, 

paste extrusion is a conventional technique generally employed to manufacture honeycombs 

mainly used for catalysts and filters. In this paste extrusion technique, a paste of ceramic powder, 

binders, and the lubricating agent is prepared using high-shear mixing. An extrusion ram forces 

through a die and results in the extruded product of the desired shape, which can be further 

molded into required shape and length; the extruded green bodies go through a typical ceramic 
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processing route of drying, the binder burns out, and sintering produces the final macroporous 

ceramics. Fifth, the amorphous bubble bonding a unique cellular solid fabrication technique is 

where hollow spheres can be bonded together by applying heat to a cellular network of precursor 

hollow spheres. Sixth, rapid prototyping technique, also known as solid free-form fabrication, is 

employed to produce a scaled or full-sized prototype from complex datasets, in which three-

dimensional objects are assembled by point, line or planar addition of the material [2]. 

The above techniques are utilized to fabricate cellular ceramics for various applications. 

Although the control over the structure and functional properties of cellular ceramics is 

continuously improving, all the processing routes suffer from an inherent limitation: every 

processing route is intrinsically limited to a narrow range of pore characteristics. In addition, 

removal of the pore foaming agent can be considered the problem, and efforts have been input in 

developing processing routes with environmentally friendly pore forming agents, yielding 

techniques such as gel casting, direct foaming or recent developments with particles-stabilized 

wet foams. In pursuit of such processing routes, freeze casting has attracted considerably more 

focus in the last few years because of the ability to develop bio-inspired novel porous ceramics, 

which can be post-processed to dense hybrid materials. This technique exploits the anisotropic 

growth characteristics of solvent crystals and phases segregation of particulate suspensions under 

unidirectional freezing conditions to develop hierarchical porous solids. Although various 

solvents have been attempted, water remains as the predominantly employed freezing vehicle 

because of the availability and similarity of the resultant structure that are major interests to 

design bio-inspired materials. A key feature of the freeze-cast porous solids is the presence of the 

tunable anisotropic pore morphology with low tortuosity that is highly suitable for structural, 

biomedical, and energy storage applications. Moreover, within a wide range of wide porosity 
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freeze cast, porous ceramics exhibit significantly greater compressive strength in comparison to 

isotropic porous ceramics processed using the other techniques.  

Freeze casting has first been developed as a near net shape forming technique, yielding dense 

ceramics parts with a fine replicate of mold details. Any ice crystal being converted into porosity 

later on its porosity in the process, introducing large size defects are unwelcome in ceramic 

applications. It is realized that the formation and growth of ice crystals is a substantial benefit if 

it is properly controlled. During the solidification of the slurry where the structure is formed,  

characteristics of the future porosity are determined. During this stage, continuous crystals of 

solvent that formed under certain conditions and grew into the slurry are rejected by moving of 

solidification. The technique consists of freezing a liquid suspension followed by sublimation of 

the solidified phase from solid to gas under reduced pressure, and subsequent sintering to 

consolidate and densify the wall, leading to porous structure with unidirectional freezing, where 

pores are a replica of solvent crystals. In freeze-casting, the particles in suspension in the slurry 

are rejected from the moving solidification front and piled up between the growing cellular 

solvent crystals.  
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2.3 Digital Image Correlation  

  Digital Image Correlation (DIC), also referred to photogrammetry, was developed in the 

early 1980s at the University of South California as a method for the full field analysis of surface 

strain [10]. The digital image correlation has demonstrated uses in the following industries: 

automotive, aerospace, biological, industrial, research and educational, government and military, 

and electronics. This method is based on the calculation of surface deformation using a set of 

digital images from un-deformed and deformed states. The technique consists of capturing grey-

scale images of a random or regular surface pattern using cameras. The surface pattern is 

typically applied in the form of dark speckles on top of a white/high contrast base, providing 

patterns that can easily be recognized from image to image. This surface pattern deforms during 

loading. Image facets are created within the captured images allowing for surface coordinates 

and deformation to be tracked from image to image with sub-pixel accuracy. Upon the 

conclusion of processing, a complete strain map of the specimen surface is obtained. Originally 

developed as a 2D technique, measurements utilize a single camera focused directly on the 

surface of the planar specimen undergoing planar deformation. This technique is limited by the 

requirement that the specimen must undergo only planar motion. Out of plane motion and lack of 

parallel positioning introduces error into measurement making 2D digital image correlation 

impractical to apply to cylinders in uniaxial compression. This three-dimensional technique 

involves the use of two digital cameras. The cameras are placed so that the specimen surface is 

viewed from two different angles creating a full-field three-dimensional measurement of the 

specimen shape and displacements. 

This image correlation is a non-contact measuring technique for determining 3D coordinates, 3D 

motion, surface deformation, and strain. 3D images were captured by using high-speed cameras. 
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The edge of using this camera is to ensure the accuracy of the strain data measured with the 

digital image correlation system. An optically based sensing system that can measure the 

displacement and strain over essentially the entire area of utility-scale blade leads to a measuring 

system that can significantly reduce the time and cost associated with traditional instrumentation. 

2D or 3D image correlation photogrammetry can also be combined with high-speed cameras. 

These image correlations used for providing full-field results with extensive quantitative 

capability extends its applicability in various studies [13]. It is used to find out the radial strain 

result in an armored housing on a bracket, aimed at a prepared area of interest on the composite 

flywheel with possible crack radiation [13]. These cameras were used in high-speed tire 

dynamometer testing where the tire speeds up to required kilometers per hour where the pictures 

are captured showing principal strains on the complete tire. The software can calculate strains 

between any two different measurement conditions, and additional images can be added to a 

measurement series. There is no problem importing a reference image of the unloaded tire and 

then recalculating the strains relative to this new reference point, if so desired. Alternatively, the 

relative strain between any two intermediate steps in a long measurement sequence can be 

calculated in addition to the automatically calculated strains relative to the first step. High-speed 

materials from the fracture mechanics to production-rate forming limit analysis are ideally suited 

for the 3D image correlation method. This correlation system with fully integrated number of 

frames per second allows frame cropping to significantly increase the frame rate. By reducing 

the active pixels, the frame rates can be significantly increased. The robustness of 3D image 

correlation photogrammetry becomes clearest when dynamic deformations are considered. The 

usage of high-speed cameras, the method can capture high-speed events such as ballistic and 

crash events. Dielectric elastomers are currently being developed due to their significant 
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potential advantages over alternatives such as shape memory alloys [13].  Important criteria are 

high elastic strain, low power dissipation, wide operating temperature range, and rapid actuation 

with precise control. 3D image correlation photogrammetry is an excellent tool for evaluating the 

performance of these actuators. 

3D coordinates are measured and evaluated using stereo-camera setup; therefore, the specimen is 

allowed to move in 3D space and the coordinates will be calculated in x, y and z so distance 

changes are no problem. For the 3D evaluation setup, a sensor setup is required using stereo 

camera setup lighting in terms of hardware as well as software basically the ARAMIS 

professional software is then used leading over the technical part. 3D cameras have out-of-plane 

motion detection; the other thing one should consider is lighting therefore good measurement 

needs to have good illumination depending on the frame rate lamps need to be powerful for the 

slow speed measurements. It is important to provide proper illumination to ensure enough image 

contrast and to ensure short shutter time for fast motions. 3D systems basically do have a stereo 

camera frame on which the cameras are mounted to provide enough mechanical stability and 

thus provide accurate 3D coordinates throughout the measurement. 

Initially, the stochastic patterns are sprayed on the manufactured sample by using black aerosol 

paints. Before processing to testing of the sample to avoid any kind distortion from the lenses. 

the calibration is done. The ARAMIS software computes the coordinates on the pattern in each 

individual image or frame of a video. The use of a rigid geometrical construction compensates 

for the lens distortion, which shows effect in practice. Based on the sample dimensions the focal 

lengths of the camera and the distance between the camera and the sample are chosen from the 

ARAMIS manual. The next step is to perform the calibration and position the camera at a 

distance that allows you to cover as much as possible of your specimen. Make sure the camera is 
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placed perpendicular onto the object in both horizontal and vertical axis to avoid pseudo strain 

due to the out-of-plane movement of the object. Then focus the camera to determine the 

displacements to scale the images. 

After calibration begins the compression test and record the images. The recorded video or the 

images are then analyzed in the GOM correlate software. The first step in this software is to 

create the surface component using squared facets on the acquired images, then the stochastic 

pattern structure is identified automatically for all the available images. The pattern quality was 

checked for all tests and satisfied the recommended parameters to allow for the reliable 

measurement of strain. A three-dimensional gradient tensor field is calculated to create strain 

distribution profiles capable of displaying both major and minor strain of specimen during 

loading. Now the full field strain distribution is displayed on top of the image data and you can 

see a legend of displaying strain values; in addition, we can also do the point wise inspection 

with deviation labels. The available strain data of x and y values allows us to find out the 

poison’s ratio values for different oriented manufactured samples. 
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Figure 1(a) The illuminating light focusing on the sample before calibration 1(b) The figure represents the 3D 
camera mounted on tripod and the system to compute data for the test of specimen. 

 

 

 

Fig 1(a) represents the illuminating light focusing on the sample to get a better image in the 

provided DIC system. Then the better image will be able to measure the distance between the 

center of the tripod to the face of the sample and further proceeded by calibration before the test. 

Fig 1(b) represents the significant devices the camera mounted on the tripod and system provided 

with ARAMIS software to compute the data for the test of the specimen. 
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2.4 Computational Methods 

The microstructural features of cellular solids affecting their mechanical response are 

most easily observed in engineering honeycombs and foams. Honeycombs, with their prismatic 

cells, are referred to as two-dimensional cellular solids, while foams with their polyhedral cells 

are three- dimensional cellular solids. The relative density is the density of the cellular solid 

divided by that of the solid it is made from and is equivalent to the volume fraction of solid.  

The wide range of demanding applications has grown in ceramics due to recent advancements in 

fabrications that enable the production of sub-micrometer grained ceramics which are free of 

impurities and amorphous phases at the grain boundaries. The extensive application of ceramics 

is still limited by their low fracture toughness and large variability of strength in comparison to 

metals [12,13]. Therefore, it is essential to gain a thorough understanding of not only the fracture 

process at the microscopic level but its relation to macroscopic material behavior. Linking 

numerical modeling with sound experiments and theory is paramount to reaching this goal. 

In the theory of composite materials, the representative elementary volume (REV), also called 

the representative volume element (RVE) or the unit cell [14], is the smallest volume over which 

a measurement can be made that will yield a value representative of the whole. Representative 

volume element (RVE) for a material point of the continuum is a material volume which is 

statistically representative for the infinitesimal material neighborhood of the material point. It is 

known as a heterogeneous material with spatially varying but known constitutive properties. It is 

of importance that statistical properties of the state variables are considered invariant of the 

position in the material. This is called statistical homogeneity. 
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To build a RVE model ABAQUS package is used. ABAQUS is a complete finite-element 

environment that provides a simple, consistent interface for creating, submitting, monitoring, and 

evaluating results from Abaqus/Standard and Abaqus/Explicit simulations. Abaqus is divided 

into modules, where each module defines a logical aspect of the modeling process; for instance, 

defining the geometry, defining the material properties, and generating mesh. As we move from 

module to module, we can build the model from which Abaqus generates an input file that the 

user submits to the Abaqus/Explicit analysis product. The analysis product performs the analysis, 

sends the information to Abaqus to allow monitoring the progress of the job, and generates 

output database. Finally, the visualization module of Abaqus can be used to read the output 

database and view the results of the analysis. 
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Modeling Approach: 

The model is built and analyzed in the following steps. Parts define the geometry of the 

individual components of the model and, therefore, are the building blocks of an Abaqus model. 

It is possible to create parts that are native to Abaqus or to import parts created by other 

applications either as a geometric representation or as a finite element mesh. Then the material 

properties like Young’s modulus and Poison’s ratio are defined. Properties of part can be defined 

through sections. A solid homogenous section is created, and this section is assigned to RVE. 

Each part is oriented in its own coordinate system and is independent of other parts in the model. 

Although the model may contain many parts, it contains only one assembly. It is possible to 

define the geometry of the assembly by creating instances of a part and then positioning the 

instances relative to each other in a global coordinate system. An instance can be classified as 

either independent or dependent. Independent part instances are meshed individually, while the 

mesh of a dependent part instance is associated with the mesh of the original part. By default, 

part instances are dependent and so for this part.  

The mesh module allows generating meshes on parts and assemblies created within 

Abaqus/CAE. As with creating parts and assemblies, the process of assigning mesh attributes to 

the mode - such as seeds, mesh techniques, and element types - is feature based. As a result, the 

user can modify the parameters that define a part or an assembly, and the mesh attributes within 

the mesh module that are regenerated are automatically specified. Applying prescribed 

conditions, such as loads and boundary conditions, are step dependent, which means that the user 

must specify the step or steps in which they become active. Now that steps are already defined in 

the analysis, this section defines prescribed conditions. In structural analyses, boundary 

conditions are applied to those regions of the model where the displacements and/or rotations are 
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known. Such regions may be constrained to remain fixed during the simulation or may have 

specified, nonzero displacements and/or rotations. 

The periodic boundary conditions are applied to simulate the process in a small part of large 

system. Each side in the computational cell is interacting not only with adjacent side in the cell 

but also with their images in the adjacent boxes. The choice of the position of the original box 

has no effect on the forces or behavior of the system.  

Once all the tasks involved in defining a model are done, and then the job module can be used to 

analyze the model. The job module allows for creating a job, submitting it for analysis, and 

monitoring the progress. Multiple models can be created and monitored simultaneously. In 

addition, there is an option of creating only the analysis input file for model. This option allows 

viewing and editing the input file before submitting it for analysis. Graphical post processing is 

important because of the great volume of data created during a simulation. The visualization 

module of Abaqus/CAE allows viewing the results graphically using a variety of methods, 

including deformed shapes plots, contour plots, vector plots, animations, and X-Y plots. In 

addition, it allows creating tabular reports of the output data.  
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CHAPTER 3 

  

Preparation of Freeze Casting Alumina 

 

3.1 Experimental Set Up and Operational Procedure of Freeze Casting 

The ice-templating process has attracted an increasing effect over the last few years, 

particularly in the field of porous ceramics. Freeze Casting is a versatile technique that involves 

solidification of particulate suspension under the influence of a unidirectional temperature 

gradient that facilities anisotropic growth of solvent crystals. Therefore, the freeze casting 

technique requires a device that can enable uni-directional freezing of particulate suspensions 

under well-controlled cooling conditions. Although the technique is simple in principle, there is 

no commercial set up available yet that can be readily employed to process materials under 

unidirectional freezing conditions. The main components of this device are liquid Nitrogen L-N2; 

cold finger, which is made of thin steel plate; and a cryogenic temperature measurement system 

that records temperature of suspensions as low as -100°C. The Dewar used in the experiment is 

thermally insulated cylindrical vacuum flask with a capacity of 3L. This L-N2 Dewar is placed on 

a thick aluminum base plate on which all the components of the device are attached. In order to 

avoid all the vibrations and to ensure that the plate is parallel to the ground, the leveling screws 

with rubber discs are attached to the base plate. The stoppers are attached to the top surface of 

the base plate to fix the Dewar at the center of the plate. A metal plate is attached to one side of 

the base plate to fix the Dewar at the center of the plate. The temperature measurement system is 

placed on the metal plate which is attached to the base plate.  

A long metal sleeve concentric with the threaded rod rests on a circular nut, which is attached to 

the rod. As the nut rotates, the long metal sleeve can move vertically along the threaded rod. 



www.manaraa.com

22 
 

 
 

There are two L-shaped hollow arms that are attached to the setup. One end of one of the L-

shaped arms (called L-N2 level indicator) is fixed to a large metal disk, which is attached directly 

to the long metal sleeve towards the upper end, and a small metal plate is fixed at the other end 

of the arm. On the L-N2 level indicator, a funnel is also attached at the top that is used for 

pouring L-N2 into the Dewar. The mechanism was devised that allows to measure the L-N2 level 

within the Dewar and adjust the gap in between the L-N2 top surface and the cold finger. The 

other L-shaped arm holding the cold finger at one end is attached to a short metal sleeve through 

the other end, where the short sleeve is concentric with the long metal sleeve. The Teflon mold is 

placed on the cold finger where the prepared suspension is placed in it. The suspension is in 

contact with the cold finger which is placed above the liquid nitrogen surface. The temperature 

of the suspension starts to decrease rapidly at the bottom compared to the top within the mold is 

subjected to unidirectional temperature gradient where the temperature increases from bottom to 

top. 

A digital micrometer is also connected to short metal sleeve, where the movement of the spindle 

of the micrometer controls the vertical movement of the short sleeve along the long sleeve. Both 

sides of the cold finger (i.e., thin steel plate) are metallographically polished, and the circular 

shape (diameter ~90 mm) of the plate helps to maintain a uniform temperature distribution over 

the cold finger. As illustrated in Fig. 2 the cold-finger is not directly attached to the L-shaped 

metal arm, rather is connected through a Teflon connector to minimize the heat transfer to the 

cold-finger from the metal arm. The angle in between the cold-finger and metal arm is 90°, 

which keeps the cold-finger parallel to the L-N2 surface inside the Dewar. It is also of note that 

prior to start of an experiment, both the metal plate on the L-N2 level indicator and cold-finger 

reside at the same height from the base plate. The low temperature measurement system consists 
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of a 4-channel thermocouple data logger and a T type thermocouple (Omega Engineering Inc., 

Stamford, CT), where the thermocouple is attached on the top surface of the cold finger. T type 

thermocouple is chosen because it is suitable for extremely low-temperature applications (e.g., 

cryogenics and ultra-low freezers) and has excellent repeatability within the temperature range of 

-200°C to 350°C with an accuracy of +/- 1°C and sensitivity of about 43 µV/°C  

The operation set up is set up is shown in the below pictures describing each component. Fig. 

2(a) represents thermally insulated container, which is named as Dewar. The Fig. 2(b) represents 

the base plate, which holds the Dewar with stoppers mounted on it, and the leveling screws were 

placed under the base plate for support and ensure the base plate is parallel to the ground. Fig. 

2(c) is represented to present L-shaped arms for Liquid-N2 indicator and cold finger threaded rod 

and circular nut. Fig. 2(d) presents digital micrometer, short metal sleeve, and large metal disc. 

The Fig. 2 (e) shows the data logger. Fig. 2(f) shows the cold finger [2]. 
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Figure 2 Images of the actual components of the custom-made freeze casting device: (a) liquid N2 Dewar, (b) base 
plate, fixture for data logger, leveling screws, and adjustable stoppers, (c) L-shaped arms for the L-N2 level indicator 

and cold finger, threaded rod and circular nut,(d) digital micrometer, short sleeve, and large metal disc,(e) data 
logger,(f) cold finger [2]. 
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3.2 Processing of Freeze Casting 

The various processing steps involved in the freeze casting are described in this section. 

Initially, it is important to prepare well-dispersed aqueous solution, for that the required amount 

of ceramic powder, deionized water and milling media (ZrO2, spheres of 5mm diameter) were 

mixed in a Nalgene bottle. In order to stabilize the suspension, a small amount of dispersant 

(typically 0.5 wt.% of the powder) was also added to the suspension. Next, the suspension was 

ball milled for 24 hours on the ball-milling device as shown in Fig. 3(a).  

After completion of ball milling, a binder was added to the suspension (typically 5 wt.% of the 

powder) and mixed for another hour. Afterward, the ZrO2 spheres were separated from the 

suspension followed by de-airing for 30 min shown in Fig. 3(b). This process is done on a device 

where the vacuum pump is connected to a container, in which the suspension is placed to remove 

the air bubbles. After this step the suspension is casted into the mold by freezing with Liquid N2 

as shown in Fig. 3(c). Afterwards, the frozen samples were freeze dried for 96 hours at low 

pressure and low temperature shown in Fig. 3(d). Next the freeze dried samples were sintered in 

a box furnace Fig. 3 (e).  Fig. 4. describes about the processing steps of the sample preparation 

where the image were represented in the Fig. 3. The flow chart in detail give us detailed process 

of preliminary step of the solution preparation then proceeding step wise to sintering to 

manufacture green alumina samples. 
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Figure 3 Processing Steps involved in unidirectional freeze casting:  3(a) Ball Milling 3(b) De-airing of suspension 

3(c) Freeze Casting 3(d) Freeze Drying 3(e) Sintering 
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Figure 4 Flow chart of Freeze Casting Processing steps and the final solidification of the prepared samples 
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Preliminary studies stated that the amount of Liquid N2 in the Dewar is one critical parameter to 

control freezing kinetics [5,6]. During this experiment the freezing velocity is not varied; this 

suggests the gap between the cold finger and the Liquid N2 is constant for each prepared sample. 

This ensures that both the cold finger and the Teflon mold containing ceramic suspension are 

retained within the cooling zone inside the Dewar during freeze casting. It was decided to utilize 

1.75 L of L-N2 for each experiment. To measure the desired amount of Liquid N2, which is 

contained in the Dewar, a level indicator is placed in the Dewar, which can move vertically on 

the threaded rod to adjust the position for different volume of L-N2 in the Dewar. Afterwards the 

Liquid N2 is poured into Dewar through the funnel until top surface of liquid touches the metal 

plate of level indicator. This indicates the desired volume of L-N2 is present within the Dewar. 

The level indicator is then moved out of Dewar. The next step is to adjust the gap in between the 

cold finger and top surface of L-N2 which is performed using the digital micrometer.  

As the spindle moves out of the micrometer, the L-shaped arm containing the cold-finger moves 

upward and digital reading on the micrometer indicates the magnitude of the vertical 

displacement. Using the micrometer, the cold-finger is displaced upward until the desired gap in 

between the cold-finger and L-N2 is achieved. As mentioned previously, by adjusting the gap in 

between the cold-finger and L-N2, unidirectional temperature gradient and thus the freezing front 

velocity are controlled. 

In the next step, a Teflon tube is placed on the cold finger, which is utilized as mold to contain 

ceramic suspension during freeze casting. Both ends of the Teflon tube are polished to make 

them flat and parallel. To ensure there is no leakage from the bottom of the mold on the cold-

finger, a small amount of grease is applied on the bottom of the surface of the mold to glue the 

mold on the cold finger. The precautions are considered so there is no spread of grease inside the 
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mold, and even when transferring the suspension to the mold, so that no air bubbles get trapped 

within the suspension, which can cause defects in processed materials. During this stage, the 

Teflon mold is radially insulated using high-density polymeric foam to avoid any thermal 

gradient from the sides so that the suspension within the mold is subjected to only unidirectional 

freeze casting. The upper part of inner wall of the Dewar is also insulated to radial thermal 

gradient to the mold. The length of the freezing process varies within the range of 30-70 min 

depending on the ice-growth velocity. The time requirement of the unidirectional solidification 

of a ceramic suspension in the freeze casting process typically ranges from 30-60 min; 

preparation of well-dispersed aqueous suspension is important.  

After completion of the freeze casting, the frozen sample was removed from the mold and stored 

in the refrigerator temporarily. Afterward the frozen samples were freeze-dried for 96 hours at  

low pressure (0.014 mbar) and temperature (-50°C). Next, the freeze dried samples were sintered 

in a box furnace using the following time temperature schedule: (i) heated from the room 

temperature to 450°C at a rate of 3°C/min and held for 4 hours for the binder burnout, (ii) heated 

from 450°C to 1550°C at a rate of 5°C /min and sintered for 4 hours, and (iii) finally cooled from 

sintering temperature to the room temperature at a rate of 5°C/min. 

The below Fig. 5 is the representation of the sintering cycle for the samples. In this process the 

temperature is varied for periods of time to compact and form a solid mass of material by heat 

below its liquification point.  
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Figure 5 Schematic diagram of sintering regime for all the green samples 

 

 

The above Fig. 5 is the representation of the sintering cycle for the samples. In this process the 

temperature is varied for periods of time to compact and form a solid mass of material by heat 

below its liquification point.  
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3.3 Manufacturing of Off-Axis Slabs 

A waterjet was used to manufacture off-axis slabs of alumina. Waterjet is a generic term 

used to describe equipment that uses a high-pressure stream of water for cutting or cleaning 

purposes. Abrasive jet is a subcategory of the water jet in which an abrasive is introduced to 

accelerate the process. The ordinary tap water is pressurized and forced it through a small hole. 

In the case of the abrasive water jet, the garnet abrasive is mixed with water and a thin stream of 

water traveling very fast, which will rapidly erode most materials. Water jets can cut about any 

material that can be made into a sheet. Machining with waterjets has many advantages over other 

machining technologies [9]. The most important advantages are that no heat is generated in the 

work piece, there are low machining forces on the workpiece, machining of a wide range of 

materials is possible, and there are free contouring possibilities. 

Aluminum oxide is an electric insulator but has a relatively high thermal conductivity for a 

ceramic material. Aluminum oxide is insoluble in water. For cutting alumina, advanced waterjet 

software is used; this software named ProtoMAX creates a space for personal drawing of the 

cutting operation. Initially the drawing is done in required geometric shapes to create a layout, 

and these layout files should be saved as DXF files. The cut qualities were assigned to drawing 

elements; it defines how fast the nozzle travels and determines the edge quality of the part. The 

slower the cutting speed, the smoother the cutting edge; the higher the cutting speed, the coarser 

the cutting edge. The layout contains all the tools to assigns the qualities for the geometries in the 

part. Next, the tool to clean up the drawing is opened; the clean tool automatically works with 

the geometries in the drawing to ensure there are no other gaps or other issues that will cause a 

problem for the machine. The last step in the layout is to add the path elements to machine tool 

path. The layout has automated pathing tools to make this process easy. The post tool 
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automatically converts the drawing file to tool path file and gives a chance to inspect or make 

corrections before proceeding for the cutting. 

After creating the tool path file, that file is opened in the ProtoMAX MAKE. Then the material 

type and thickness are mentioned. Under the control of the ProtoMAX MAKE software the 

cutting nozzle follows the machine tool path using the drawings x and y coordinates. Prior to 

start the actual cutting of the part it is always good to do a dry run. Before preparing for the 

operation, lower the splashguard, raising the water level to keep noise and dust levels down and 

closing the lid. 

Altogether there are three orientations which are machined using water jet. The 0o, 15o and 90o 

orientations are measured in the ice-growth direction.  Once the alumina slabs with different 

orientation are cut with the waterjet, individual sample cubes with dimensions of 6x6x6 mm3
. 

Next, to cut them into the required samples they were machined on the diamond saw.  Materials 

are ensured to be cut in the middle of the large samples to ensure the homogenous density of the 

specimens by avoiding high-density gradients near the outer surfaces of the alumina samples. 
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Figure 7 Diamond saw cutting machine 

 

 

 

     

Figure 6 Represents the water jet cutting system 
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After sintering, the samples are manufactured in the water jet cutting system as shown in the Fig. 

6 in three different slabs. For cutting in definte shape and different off-axis loading samples the 

ProtoMAX software is advantageous. Then these slabs are futher manufactured into 

individvidual cubic samples on the diamond saw machine as shown in Fig. 7. 
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CHAPTER 4 

 

Compressive response of alumina in different orientations 

 

Experimental Results 

The foams manufactured on a large scale, are used in packaging, crash protection, and 

lightweight materials. It is significant to understand the mechanical behavior of materials. The 

strength and fracture behavior are still important even when the primary use is not mechanical 

and when the foam is used for thermal insulation or flotation or as a filter. The elastic plastic like 

those of honeycomb structure show linear elasticity at low stresses followed by a long collapse 

plateau truncated by a regime of densification in which stress rises steeply [1].  

When loading is compressive, the plateau region is associated with the collapse of the cells by 

elastic buckling in elastomeric foams by the formation of plastic hinges in a foam which yields 

and by brittle crushing in a brittle foam. Increasing the relative density of the foam increases 

Youngs modulus, raises the plateau stress, and reduces the strain at which densification starts. 

Uniaxial compression testing is valuable to optimize critical yield properties of alumina, and 

accurate determination of strain behavior is necessary to advance the performance of the 

material. 

Digital image correlation (DIC) provided a non-contact method to analyze surface strains of 

material properties under deformation and compliments traditional measurement. DIC was 

particularly useful for analyzing compression specimens of cylindrical samples due to edge 

effects associated with shadowing and pixel mapping. Image sections, typically edges that did 

not display optimum contrast due to shadows or low light artifacts were eliminated to enhance 
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DIC analysis.  Facets, defined by pixel size and step length, were generated in grid patterns 

across the optimized areas of the digital images. Facet size is the true dimension of the defined 

area in pixels. Step length is the distance between adjacent facet centers, with smaller steps 

leading to increased spatial resolution. Upon facet definition, a start point was defined for the 

initial image set. The start point provides a reference for the software to recreate the initial facet 

field on subsequent image sets to quantify three-dimensional strains. During computer 

computation, the gray scale speckle pattern is tracked within each rectangular facet from image 

to image. A three-dimensional gradient tensor field is calculated to create strain distribution 

profiles capable of displaying both major and minor strain of specimen during loading.  
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4.1 0-Degree Off-Axis Loading: Uniaxial compressive Response 

Computer models have achieved great predictive power, but without precise material 

properties, the models will never fulfill their accurate modeling potential. Understanding the 

complex response of materials in order to fully understand their properties is critical for the 

refinement of design and manufacturing with all materials. 3D Digital Image correlation (DIC) 

provides full field 3D deformation and strain measurement, allowing for more complete 

understanding of complex material responses.  

All in a fraction of time it reduces the need for mechanical gauges and greatly increases the 

quality and quantity of the data collected. Forming verification with optical metrology, directly 

comparing against the engineering FEA computer model of stamping and hydroforms, gives 

manufacturing direct control of its operations with better data. 

The standard material properties testing for alumina includes compression test. It is suited for 3-

D image correlation method. Providing measurement abilities is not possible with traditional 

methods. The method becomes critical in anisotropic materials such as composites to 

biomaterials, where the single point or average measurements means very little. The ARAMIS 

system connects to the testing machine reading the load and displacement of crosshead and its 

data collection is fully programmable. ARAMIS then tracks these points throughout the test, so 

their complex 3D deformations and strains are measured, calculating the true strain tensor for 

every point. 

Compression tests procedures followed on Tinus Olsen 10kN load. Now the manufactured 

square samples from the cutting machine are placed between the platens. The geometry 

measurements of sample were defined as input to provide the for accurate results. Before 

proceeding, the compression tests the mode of method of compression test selected. The 
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parameter of shape selection is mentioned as square where the entries are given in terms of the 

length and width. To ensure the platens don’t move during the running the experiment initial pre-

load is applied. The square samples manufactured were compressed at a displacement rate of 

0.5mm/min. Now the stress values are tabulated from the Load Vs Time graph recorded in the 

software provided by Tinus Olsen. Compression strain values were recorded simultaneously 

using digital image correlation methods. 

 

The formulae used to tabulate the stress and strain are as follows: 

𝐹𝐹𝑡𝑡 = 𝐹𝐹/𝑡𝑡 

where 

           Ft is the force rate N/s 

           F is the applied in Newtons  

           T is the time in seconds  

The strain rate 𝜀𝜀𝑡𝑡 is given by  

𝜀𝜀𝑡𝑡 =  𝜀𝜀/𝑡𝑡 

where 

             𝜀𝜀 is the strain recorded by DIC system.  

             t is the time in seconds. 
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The stress 𝜎𝜎 is given by  

𝜎𝜎 =  𝐹𝐹/𝐴𝐴 

where  

            F is the force applied in Newtons  

            A is the cross-sectional area  

 

The modulus E is given by  

𝐸𝐸 = 𝐹𝐹𝑡𝑡/𝜀𝜀𝑡𝑡  

where 

           Ft is the force rate N/s 

           𝜀𝜀𝑡𝑡 is the strain rate 
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Figure 8: Represents load - time in off-axis loading which the samples are manufactured at zero degree. 

 

 

 
Figure 9: The above plot represents the average strain -time which is displayed in frames from the digital image 

correlation system. 
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The load in Newtons is plotted against the time in seconds; the trend is observed for the sample 

manufactured in the zero degree off axis modulus shown in Fig 8. When the sample is 

compressed quasi-statically, the maximum load till the breakage of the sample is 1600N. The 

linearity of the sample gives us the elastic limit and slope of it gives us the load rate. The optical 

measurement system helps to record the vertical displacement under compression where the data 

is plotted in the Fig 9. with respect to time. The calculation of the modulus value is further 

measured in synchronous with time period of load and strain. 

Fig. 10 represents the initial pattern formation after thorough calibration when the pre-load is 

applied in the ice-growth direction which we also refer to as zero-degree orientation. The strain 

measurements are recorded where the pattern deformation is observed in Fig. 11. The different 

colors on the pattern represent the strain concentration values. Similar steps were followed to 

record the strain measurements in the y-direction, which were represented in Fig. 12 and Fig. 13. 

After, the several steps of calibration to capture the optimized pattern to record the strain values 

from the DIC system. The shape of the adequate sample shape to be used for identification of the 

material parameters starting from the force-time curve. The x-components and the y-components 

values are useful in finding out the Poison’s ratio in the loading direction. Progressive crushing 

of the sample can be observed in Fig. 11-13. 
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Figure 10 Initial pattern image in x-direction when pre-load is applied on to the manufactured square sample in the 

ice growth direction 

 
Figure 11 Strain measurements are recorded by the DIC system in x direction under compressive loading. 
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Figure 12 Initial pattern surface component formed where the pre-load is applied in the y-direction. 

 

 
Figure 13 Strain values are recorded in y-direction by the DIC system under compression load 
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Results exhibited the minimum value for the sample manufactured in zero-degree off axis 

loading, plotted in the Fig 14-15, where the load rate and strain rate are calculated from the 

beginning of the load to the elastic limit that the sample resist to deform for the applied load. We 

can observe the force rates and strain rates for tools provided by the compression test machine 

and DIC system to further calculate Poisson’s ratio. From the Fig. 13 we can observe the pattern 

formed by the camera system  deforms in the ice growth direction when the load is applied. The 

breakage of the sample is observed till 1% strain and the stress concentration values are observed 

on the stress contour.   

 

 

 

 
Figure 14 The above plot represents the manufactured sample at zero degrees with minimum stress under 

compressive load. 
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Figure 15 Strain-time of the sample which shows minimum stress under compressive response. 

 

Fig. 16 and Fig. 17 represent the initial pattern formation when the pre-load is applied in the x-

direction and y-direction. The different colors on the pattern represent the strain concentration 

values and the point-wise inspection can be done with deviation labels. When the quasi-static 

load is applied in the y-direction the crushing of the sample is observed on the top parallelly the 

strain measurements are recorded in the x-direction upon when the sample reaches around the 

1.5% strain shown in Fig 17.  Similarly, the following measurement are recorded in the y-

direction shown in Fig. 19 which are useful in find the Modulus and the Poison’s ratio. 
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Figure 16 The initial pattern formation captured at zero sec when the preload is applied on the sample. 

 

 
Figure 17 Displacement recorded image at time period 55 sec by the DIC system. 
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Figure 18 The initial pattern image when the pre-load is applied in the y-direction. 

 
Figure 19 The strain values are recorded in this image at 55 sec in the y-direction 
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Figure 20 Modulus graph for all the tested samples loaded in orientation 

 

 

 
Figure 21 Compressive strength represented for all the tested samples loaded in orientation 
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Figure 22 Ratio of lateral strain to the longitudinal strain of the tested samples loaded in orientaion 

 

 

 

Fig. 20 represents Modulus values for all the tested samples in the zero-degree off-axis loading. 

Now from the load rate and strain rate with respective measured sample surface area we plotted 

the strength values in the Fig. 21. From the DIC system the strain values in x and y direction 

where the sample recorded to find out the Poison’s ratio of all the samples in the Fig. 22. The 

average Modulus of the tested samples is  𝐸𝐸� = 6382.32 ± 1603.91 𝑀𝑀𝑀𝑀𝑀𝑀. The average stress 

value is  [𝜎𝜎]���� = 32.43 ± 9.54 𝑀𝑀𝑀𝑀𝑀𝑀. The Poison’s ratio is the ratio of lateral strain and the 

longitudinal strain and the average Poison’s ratio of compressed samples is  𝜈𝜈12 = 0.122 ±

0.042. 
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4.2 15 - Degree Off-axis Loading: Uniaxial Compressive Response 

 

The loading direction is varied from being directly in line with the ceramic axis to normal to the 

sample axis. Off-axis testing is therefore a straightforward technique that can be used to 

characterize a wide range of properties the ceramics. The off-axis test is particularly useful since 

it assesses the ability of the composite to preserve its properties when it is not loaded in the 

optimum ceramic direction. Understanding the manner in which the properties degrade as the 

loading conditions vary is an essential requirement in the practical use of anisotropic ceramics.  

It is clearly evident that values of 15-degree off-axis loading differ from the 0-degree off-axis 

loading. The material parameters are measured from the force-time curve and strain-time curve 

for the same time period as shown in Fig. 23 and Fig. 24. The frequency of the image processing 

is 4Hz for recording the measurement data in both x and y direction. Interestingly the image 

frames reveal that initially the stress concentrations occur on top and bottom of the sample 

shown in Fig. 26 and Fig. 28. Further the crushing of the sample occurs in the direction of the 

off-axis loading. 
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Figure 23 Compressive response of 15-degree manufactured slab which displays maximum load of all tested 

samples. 

 
 
 

 
Figure 24 Strain-Time of a 15-degree manufactured slab which displays maximum load for tested samples. 
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Figure 25 Initial pattern formation image for the 15-degree orientation in the x-direction. 

 
Figure 26 Strain recordings image at 35th sec of x-component under compressive load for 15-degree orientation 
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Figure 27 Initial surface component image in the y-direction when pre-load is applied. 

 

 
Figure 28 The strain value recorded at 35th sec in the y-component for 15-degree orientation. 
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The displacement measurements are introduced through digital image correlation. The stiffness 

is measured from the force-time and strain-time from Fig. 29-30. The load data is collected from 

the Tinus Olsen and the strain data is recorded in the DIC system. The below samples are for the 

minimum value sample. The initial pattern images are formed by the DIC system for the both x 

and y component when the pre-load is applied. The frequency at which all the strain 

measurements are recorded is 4Hz. We can observe how the manufactured sample deforms when 

the load is applied. There is an interesting difference when the compressive load is applied 

unidirectionally the zero-degree orientation deformation appears to in the middle of the sample 

whereas for the fifteen-degree orientation it is observed the shearing happens and deformation 

happens in the side walls, which is evident from the Fig. 32-34. It is very clear for the minimum 

value sample when the image pattern deforms in the direction of the manufactured off-axis 

loading. 

 

 
Figure 29 The compressive load response with respective time is plotted for a minimum strength sample of a 15-

degree off-axis loading. 
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Figure 30 Strain with respective time is plotted for a minimum strength sample for 15-degree orientation 

  

 

 
Figure 31 Initial pattern formation for the minimum value sample in the 15-degree orientation. 
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Figure 32 Strain measurements recorded at 20th sec as the sample deforms in the x direction 

 
Figure 33 Initial surface component formation for the minimum value sample in 15-degree off-axis loading 
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Figure 34 Strain recordings by DIC system at 15th sec for manufactured sample in the 15-degree off-axis loading. 

 

 

 
Figure 35 Modulus data of compressed samples for 15-degree off-axis loading. 
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Figure 36 Compressive strength of the samples tested for 15-degree off-axis loading 

 

 

 
Figure 37 Strain measurements recorded from the DIC to determine the poison's ratio for 15 degree off-axis loading. 
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Fig. 35-37 represent the Modulus, Strength, and the Poison’s ratio values for all the tested 

samples in 15-degree off-axis loading. The average modulus of the 15-degree off-axis loading 

samples is  𝐸𝐸� = 4419.934 ± 1468.86𝑀𝑀𝑀𝑀𝑀𝑀. The average stress value of the 15 degree off-axis 

loading is [𝜎𝜎]���� = 23.809 ± 8.688𝑀𝑀𝑀𝑀𝑀𝑀. The Poison’s ratio is defined as the lateral strain by the 

longitudinal strain where the average value of the compressed sample is 𝜈𝜈12 = 0.1477 ± 0.035. 
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4.3 90 – Degree Off-axis Loading: Uniaxial Compressive Response 

 

We applied this photogrammetry technique to calculate the square alumina samples throughout 

the compression-loading test to determine the actual cross section area with time. The speckled 

pattern after the calibration proceeded through the DIC system to form the surface component 

and during experiment deviation of the surface component is observed.  

 

 

 

 

 

 

 

 

 

 

 

The load with respective time is mapped in the above Fig. 38; it is seen during the tests of 

compression it first deforms in a linear-elastic way, then the sample breaks to give linear 

elasticity finally as the load increases as the faces and edges are forced together. The strains 

displacements are measured with respective time from the digital image correlation in the Fig. 

39. The initial pattern formation while computing both x and y directions are shown in the Fig. 
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Figure 38 Force-Time of compressed sample represents the values for 90-degree orientation 
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40 and Fig. 42. The loads are applied perpendicular to the ice-growth direction, which the sample 

start to break from the bottom of the sample as shown in Fig. 41 and Fig. 43. 

 

 

Figure 39 Strain with respective time is plotted for the 90-degree orientation compression tested samples 

 

 

The load rates and strain rates are synchronized by considering the values for same time period. 

The maximum load for the 90 degree off-axis loading sample is almost 300 N at which the strain 

is recoded to be 1% at the breakage of the sample. More observations of the sample breakage are 

made in the Fig. 41. and Fig. 43. the patterns in both x and y direction this particular off-axis 

loading. 
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Figure 40 Surface component formed on the speckle pattern when the preload is applied to place the sample between 

the platens. 

 

 
Figure 41 Strain measurements are recorded by the DIC system at 15th sec for 90-degree off-axis loading. 



www.manaraa.com

63 
 

 
 

 

 
Figure 42 Initial surface component of the y-component in the applied direction 

 
Figure 43 Strain measurements recorded by DIC system at 15th sec of y-component 
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The below plots are represented for the minimum value sample which is uniaxially compressed. 

The stress and strain values are determined from the above formulae. The load rate and force rate 

are determined from Fig. 44 and Fig. 45. The 90-degree orientation is the perpendicular to the 

zero-degree orientation. It is clearly observed from the images that the sample breaks from the 

bottom of the sample. These deformation values are recorded by the DIC system. The 

deformation that represented in the Fig. 47 and Fig. 48 are snapped when the sample starts to 

break at 0.8% strain. 

 

 
Figure 44 The compressive load with respective time of 90-degree manufactured slab with a minimum strength of 

all tested samples 
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Figure 45 Strain-Time curve of 90-degree manufactured slab with a minimum strength of all tested samples. 

 

 

Figure 46 Initial pattern formation by DIC system in the x-direction for minimum value sample of 90- degree off-
axis loading. 
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Figure 47 Strain value recorded at 15th sec when the load is applied for 90-degree off-axis loading sample. 

 

Figure 48 Initial pattern formation by DIC system when the pre-load is applied for 90-degree off-axis loading 
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Figure 49 Deformation value recorded at 15th sec in the y-direction for 90-degree off axis loading 

 

Fig. 50 represents the modulus values for the samples compressed perpendicular to ice-growth 

direction. The strength values are represented in Fig. 51 and the Poison’s ratio values are 

represented in Fig. 52. The average modulus for the 90-degree orientation is  𝐸𝐸� = 987.13 ±

111.796𝑀𝑀𝑀𝑀𝑀𝑀. The average stress of the tested samples is [𝜎𝜎]���� = 7.808 ± 3.61𝑀𝑀𝑀𝑀𝑀𝑀. The average 

value of poison’s ratio where the 𝜗𝜗12 = 0.1407 ± 0.08. 
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Figure 50 Modulus of all the compressed samples for 90-degree orientation 

 

 
Figure 51 Compressive strength of tested samples for 90-degree orientation 
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Figure 52 Poison's ratio of a compressed samples for 90-degree orientation. 

 

The values of maximum and minimum values of each sample in three different orientations. The 

off-axis moduli of all the samples with respect to the angle of orientation are shown in Fig 53. It 

is observed that there is a decreasing trend with respect to the increasing angle. It is important to 

observe this trend as it will be helpful to corelate with the computational values.  
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Figure 53 Comparison of off-axis modulus for three different off-axis loading 

 

Table 1: Average off axis modulus and average strength experimental values for different 
orientations. 

S. No Angle of orientation 
(α) 

Avg. Off-axis Modulus 
(𝐸𝐸�,MPa) 

Avg. Strength 
(𝜎𝜎�,MPa) 

1 0 6181.36 32.43 

2 15 4259.75 23.80 

3 90 987.130 7.80 
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Figure 54 Comparison of strength in different orientations 

 

 

 

It is depicted from the above data plot in Fig 54 that under compression for the considered off-

axis loading zero-degree, 15-degree, 90-degree the calculated values for the strength and 

modulus are decreasing as the angle of orientation is increasing vice versa the calculated strength 

and the modulus increases as the angle of orientation decreases.  
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CHAPTER 5 

 

Computational Results 

 

5.1 Represented Volume Element 

Cellular solids in the form of either honeycomb-like materials with prismatic cells or 

foams with polyhedral cells are widely used in engineering applications such as lightweight 

structural sandwich panels or components designed for absorbing impact energy. Models which 

predict their compressive failure behavior have broad applicability to both engineered and 

natural cellular ceramics. 

Unit models have proven to be useful theoretical tools for understanding some of the key aspects 

of the mechanical behavior of cellular solids, such as the dependence of failure properties on 

relative density and on the failure mode of individual cells. 

Gibson and Ashby reported that their unit cell models typically overestimated the compressive 

strengths of the metallic honeycombs. Papka and Kyriakides found that the strengths predicted 

by the finite element methods of honeycombs with periodic, hexagonal cells were approximately 

15 % greater than the corresponding experimental values obtained from the tests on aluminum 

honeycombs. It was concluded that differences between the predicted and measured strengths 

were due in part variations in cell geometry that were not accounted for by their models. 

 

 



www.manaraa.com

73 
 

 
 

                                                                        

 

 

 

 

 

 

                   
Figure 57 Schematic representation of the Represented Volume Element which is developed for micromechanical 

analysis. 
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Figure 56 Images of alumina from Scanning 
Electron microscopy. 

Figure 55 Schematic presentation of the 
growth-oriented alumina. 
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A Representative Volume Element (RVE) of periodic geometry was generated. The compressive 

behavior of the RVE was determined using finite element analysis using ABAQUS software. 

The cell walls were straight and of uniform thickness throughout the model, the relative density 

of the model was specified by assigning the appropriate cell wall thickness. The material 

properties of the model considered are elastic modulus and the poison’s ratio. 

Displacement boundary conditions were imposed to simulate the uniaxial compressive axial and 

the transverse directions. The odes along the fixed edge of the model were constrained from 

translating in the loading direction; the nodes along the opposite, displaced boundaries were 

displaced incrementally in the loading direction and from rotating in the axial and transverse 

direction but were free to translate in non-loading direction. This approach allowed for the 

failure of cell walls by elastic buckling. The applying of boundary conditions results in the nodal 

reaction forces which are dived by the plane cross section area to determine the normal stress in 

the loading direction in each increment. The increment steps which are considered as a time 

period which later multiplied with strain rate to determine the strains. The elastic modulus was 

computed as the linear slope of stress-strain curve.  
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5.2 Boundary Conditions 

Free Boundary Conditions: 

These are the boundary conditions which are imposed for a molecule, a cluster or an aerosol 

particle in a vacuum. These conditions are also applied for the ultrafast process when the effect 

of boundaries is not important due to the short time scale of the involved process. 

Periodic Boundary Conditions: 

These boundary conditions are used to simulate the process in a small part of a large system. All 

the atoms in the cell are replicated throughout the space to form an infinite lattice. Each particle 

in the computational cell is interacting not only with other particles in the cell but also with other 

images in the adjacent boxes. The choice of the position of the original box has no effect on the 

forces or behavior of the system. The displacement of the particle is measured from left and right 

directions, then these measurements with the adjacent boxes in which these are used as a periodic 

boundary conditions and these tend to form boundary conditions which will replicate and tend to 

form boundary conditions which will replicate and tend to form boundary conditions which will 

replace and tend to form infinite cells. 

The following are the boundary conditions applied for the RVE: 

Periodic Displacement Boundary conditions 

𝑢𝑢 (0, 𝑥𝑥2, 𝑥𝑥3) − 𝑢𝑢(𝐿𝐿1, 𝑥𝑥2, 𝑥𝑥3) = 𝑈𝑈1 

                                                   𝑢𝑢(𝑥𝑥1, 0, 𝑥𝑥3) − 𝑢𝑢(𝑥𝑥1, 𝐿𝐿2, 𝑥𝑥3) =  𝑈𝑈2 

𝑢𝑢(𝑥𝑥1,𝑥𝑥2, 0) − 𝑢𝑢(𝑥𝑥1, 𝑥𝑥2, 𝐿𝐿3) =  𝑈𝑈3 
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Homogenized stress, strain from RVE analysis 

𝜀𝜀𝑖𝑖 =
𝑈𝑈𝑖𝑖
𝐿𝐿𝑖𝑖

 

𝜎𝜎𝑖𝑖 =
𝑅𝑅𝑖𝑖
𝐴𝐴𝑖𝑖

 

where  

U is the displacements in the respective directions 

L is the length of the applied load direction 

R is the load applied  

A is the area of the plane in which the load is applied 

One of the most complicated loading conditions on the composite is off-axis loading. Off-axis 

loading happens when a uni-directional growth oriented is subjected to a force in inclined angle 

with direction.   

In order to develop the RVE model of the micrographs, ice-templated scaffolds fabricated under 

uni-directional freezing conditions from a dense layer to anisotropic cellular structure to 

eventually a lamellar morphology oriented in the direction of the applied thermal gradient that 

prevails for rest of the length of the sample are studied. These micrographs are from Scanning 

Electron microscope. The geometric parameters of the micrographs where how the growth of ice 

influenced the porosity of the alumina scaffold are studied. From the images, the distance 

between the walls is measured and the thickness of the wall is measured. The mechanical 
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properties for different sintering temperatures of the α-alumina were studied. The objective of 

the study is to derive a coherent, self-consistent, and comprehensive set of property values for a 

single specification of alumina. This data has an increasingly important role to play in both 

manufacturing and material science applications. These data are helpful in understanding the 

significance of the properties and correlate the experimental data with the computational data. 

Finally, the number of displacements was defined on RVE to tabulate the Force and 

displacements and measuring the cross-sections of the RVE to plot the Stress-strain curves. 
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5.3 Results  

Off-axial Loading in different directions. 

The smallest repeating element of the composite can be used as the representative 

element (RVE). It is important to understand the x-direction, y-direction, z-direction for a three-

dimensional computed representative volume element. For the below image (Fig. 58) the load-

displacement is applied in the z-direction which we also refer as axial load direction. The job is 

performed incrementally with a defined step time. Upon the applied load the stress concentration 

values represented by different colors in the stress contour. 

 

 
Figure 58 Stress contour plot of RVE under axial loading 
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Figure 59 Stress-Strain values of Represented Volume Element displacements applied in the axial direction. 

 

It is well observed from the above Fig. 59 that the stress-strain values are calculated by applying 

displacement boundary conditions, which the RVE is compressed by 4%. In addition to the 

displacement boundary condition, bottom edges and side edges are applied boundary conditions 

which ensure the fixed edges of the RVE which ensures the loading will be pure compression. 

The maximum stress values in the axial direction for 1% strain is almost 100 MPa. Similarly, as 

in the above case, the displacement boundary condition is applied in the transverse direction, the 

displacement applied with reference to the x-z plane. Then the RVE is compressed by 0.28%. 

This boundary condition is applied during “Applied Load” step of the Abaqus model. In addition 

to displacement boundary conditions, bottom edges and the side edges are constrained to ensure 

the loading will be pure loading.  
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Figure 60 Stress contour plot of RVE under transverse load. 

 
Figure 61 Stress-Strain curve for RVE under the transverse load. 
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For a finite mesh, the stress-strain curve is studied in order to analyze the results. The plot of 

Stress Vs Strain is obtained. According to this plot, stress varies linearly with the true strain till 

1% strain and there is buckling observed in representative volume element. 

Similarly, the compression displacement loading, the displacement boundary condition is applied 

to RVE 1% displacement is imposed on RVE under shear loading. Also, the bottom edges of 

RVE are fixed under shear loading. It is evident in the above Fig. 62 the stress on the four edges 

of the RVE where the values are defined in the stress contour table. 

The shear loading stress-strain values are plotted in Fig. 63 after the job is submitted for analysis 

where the displacement boundary condition is applied at the dummy node or reference point. The 

stress varies linearly with true stain value up to 1% strain.  
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Figure 62 Shear displacements applied on the axial direction plane 

 

 

 
Figure 63 Stress-strain curve when displacement boundary conditions applied on the x-y plane 

0
10
20
30
40
50
60
70
80
90

100
110
120
130

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

St
re

ss
,σ

, (
M

Pa
)

Strain,ɛ



www.manaraa.com

83 
 

 
 

 

The relations between microstructural and elastic properties for both isotropic and anisotropic 

non-periodic honeycombs were, on average, not different from those for periodic honeycombs. A 

computational procedure for calculation of transformed elastic constants is illustrated by the 

following equation  

 

1
𝐸𝐸𝑥𝑥

=
𝑚𝑚2

𝐸𝐸1
= (𝑚𝑚2 − 𝑛𝑛2𝜐𝜐12) +

𝑛𝑛2

𝐸𝐸2
(𝑛𝑛2 − 𝑚𝑚2𝜐𝜐21) +

𝑚𝑚2𝑛𝑛2

𝐺𝐺12
 

 

𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃   𝑛𝑛 = 𝑐𝑐𝑠𝑠𝑛𝑛𝜃𝜃 

 

Poisson’s ratio 𝜐𝜐12 achieves by dividing lateral strain (transverse strain)/Axial strain 

Then 𝜐𝜐21 obtains by  𝜐𝜐21 = 𝐸𝐸2
𝐸𝐸1
𝜐𝜐12 

The stiffness of the ice-templated sintered scaffolds was estimated from the slope of the linear 

part of the uniaxial compressive stress-strain curves. The Young’s modulus of ceramics is 

dependent on crystal structure and microstructural features namely porosity. By changing the 

level of porosity various studies have been made to understand the strength, modulus and 

fracture toughness of alumina. The strength and modulus decreased with an increase in porosity. 
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Off axis moduli for 26% relative density 

 

 
Figure 64 Calculated off-axis modulus is plotted for the different angle of orientations 

 

It is very significant to understand the relationship between the off-axis modulus and the angle of 

orientation, as the alumina is anisotropic material. Now the modulus values, which are calculated 

from the above equation with respective off-axis loading angle are plotted and shown in Fig. 64. 

The trend of the graph is the off-axis modulus decreases as the angle of orientation increases. 

This calculated off-axis modulus at different orientations will help to correlate the modulus 

values with the different relative density representative volume and also with the experimental 

values.  
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Representative Volume Element of Relative Density 0.21  

After successfully running the analysis for compression loading, the following contour plot is 

obtained for the RVE as shown in Fig. 65. It is observed that maximum stress and minimum 

stress are obtained for a defined mesh seed size. The stress concentrations values of RVE are 

illustrated in the stress contour. The stress-strain plot is observed to be the stress is linearly 

proportional to the strain. The stress linear elastic behavior is observed and the strain 4% is 

nearly 350 MPa shown in Fig. 66. 

 

 

 
Figure 65 Stress contour of RVE with 21% relative density in the axial direction. 
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Figure 66 Stress-strain curve for the relative density is 0.21 under displacement boundary conditions. 
 

 
Figure 67 Stress contour of RVE with relative density 21% in the transverse loading  
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After submitting the job for analysis, which is applied in the transverse direction, it is observed 

that the buckling of the central walls of the RVE. The color representation of the RVE represents 

the indicates the stress contours.  The stress varies linearly with the true strain of up to 1.2% 

from the Fig 68. The stress at 1.2% is 13 MPa and the stress at 2% strain is 18MPa. 

 

 

Figure 68 Stress-Strain curve plot of RVE which displacement boundary conditions are applied in the transverse 
direction. 

 

From Fig. 68 the stress strain curves are plotted for the RVE of relative density 0.26 further 

calculating the stiffness values in the transverse direction. Similarly, the shear boundary 

conditions are applied to RVE in Fig. 69 to find the stiffness. From the transformed elastic 

constant equation for anisotropic materials the off-axis angle values are substituted to find the 

values of the modulus values for different off-axis loading. 
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Figure 69 Shear displacement boundary condition applied in the axial plane 

 

 
Figure 70 Stress-strain curve when shear displacement applied in the x-y plane. 
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Off-axis moduli for 21 % relative density  

 

 
Figure 71 Off-axis modulus plotted for a different angle of orientations. 

 

 

The above Fig. 71 describes the stiffness-angle where the off-axis modulus is decreasing as the 

angle of orientation is increasing. The finite element predictions of relative densities 0.21 and 

0.26 were analyzed were of the elastic constants are compared with available experimental 

modulus values. 
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Table 2: Comparison of modulus values experimentally and modelling values in different 
orientations 

 0-degree Off- Modulus, 
GPa 

15-Degree Off-
Modulus, GPa 

90-Degree Off-
Modulus,  
GPa  

RVE 0.21 % 
Relative Density  

8.806 4.857 1.056 

RVE 0.26 % 
Relative Density  

10.539 
 

6.0808 1.1843 

Experimental 
Values (Average 
Value)  
0.21 % relative 
density  

6.181 4.259 0.987 

 

 

 
Figure 72 Comparison stiffness with misalignment angle of different relative densities and experimental values. 

 

0

2

4

6

8

10

12

0 15 30 45 60 75 90

St
iff

ne
ss

,M
Pa

Misalignment Angle, α

0.21%  Relative
Density

0.26% Relative
Density

Experimental Data



www.manaraa.com

91 
 

 
 

Results of the micromechanical model were compared of two relative densities compared with 

the experimental results are shown in Fig. 72. The above data table reveals that for the 0.21% 

relative density of the computational model is almost nearly to the experimental values of 

samples with 0.21 relative density. The values also indicate that as the relative density increases, 

the stiffness of the sample increases. 
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CHAPTER 6 

 

Conclusions 

 

The off-axis compressive behavior of ice-templated ceramic was analyzed using experimental 

results and micro-mechanical model simulation. Ice-templated ceramics is a versatile processing 

technique to manufacture the anisotropic ceramic foam by exploiting the anisotropic growth 

characteristics and lamellar morphology. During the freeze casting process, the gap between the 

cold plate and the liquid nitrogen is not varied; it is understood that the freezing velocity for all 

the casted samples is constant. The ice-templating process results in processing-structure-

property relationships determined by the microstructure. The processed alumina samples which 

later manufactured by water jet machine from the freeze casting were tested under quasi-static 

off-axis loading conditions and were used to determine the mechanical properties of the material. 

Digital image correlation (DIC) was used to measure the strain response of ice-templated 

ceramic under off-axis loading. DIC results revealed non-homogenous strain distribution in the 

material during compression. Specifically, the origin of the localized strain concentration 

columnar regions, which are oriented in the ice-growth direction. Those regions were found to be 

the onset failure of in off-axis and 0-degree loading conditions. The experimental results reveal 

the strong influence of the loading direction on the compressive behavior of the ice-templated 

ceramic. Additionally, the properties like modulus, strength, and Poison’s ratio are compared in 

all three different orientations, which essentially helps us to relate the values of computational 

model. It is observed from the tests that these values of three different loading conditions 

decrease as the angle of orientation increases.  A Representative Volume Element is developed 
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to predict the behavior of off-axis loading. The micro-mechanical modelling is analyzed for two 

different relative densities. Micro-mechanical loading results indicated that buckling of lamella 

walls was determined as the driving factor of failure. The results of the model compared 

favorably with the experimental results. It is evident from the plots of computational models that 

the modulus value increases as the relative density increases. Nearly, the values of three different 

loading conditions and the values obtained from the anisotropic equation of computational model 

with same relative density are equal. This gives insight in future to work on more relative 

densities and different loading conditions. Studies reveal that there is influence of platelets on the 

strength and stiffness of the sample which modelling them will give better understanding of the 

microstructural-relationship with the properties of the material. 
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